Abstract:In this technical report, we present SWE-Master, an open-source and fully reproducible post-training framework for building effective software engineering agents. SWE-Master systematically explores the complete agent development pipeline, including teacher-trajectory synthesis and data curation, long-horizon SFT, RL with real execution feedback, and inference framework design. Starting from an open-source base model with limited initial SWE capability, SWE-Master demonstrates how systematical optimization method can elicit strong long-horizon SWE task solving abilities. We evaluate SWE-Master on SWE-bench Verified, a standard benchmark for realistic software engineering tasks. Under identical experimental settings, our approach achieves a resolve rate of 61.4\% with Qwen2.5-Coder-32B, substantially outperforming existing open-source baselines. By further incorporating test-time scaling~(TTS) with LLM-based environment feedback, SWE-Master reaches 70.8\% at TTS@8, demonstrating a strong performance potential. SWE-Master provides a practical and transparent foundation for advancing reproducible research on software engineering agents. The code is available at https://github.com/RUCAIBox/SWE-Master.
Abstract:Recent advances in large language models (LLMs) have enabled software engineering agents to tackle complex code modification tasks. Most existing approaches rely on execution feedback from containerized environments, which require dependency-complete setup and physical execution of programs and tests. While effective, this paradigm is resource-intensive and difficult to maintain, substantially complicating agent training and limiting scalability. We propose SWE-World, a Docker-free framework that replaces physical execution environments with a learned surrogate for training and evaluating software engineering agents. SWE-World leverages LLM-based models trained on real agent-environment interaction data to predict intermediate execution outcomes and final test feedback, enabling agents to learn without interacting with physical containerized environments. This design preserves the standard agent-environment interaction loop while eliminating the need for costly environment construction and maintenance during agent optimization and evaluation. Furthermore, because SWE-World can simulate the final evaluation outcomes of candidate trajectories without real submission, it enables selecting the best solution among multiple test-time attempts, thereby facilitating effective test-time scaling (TTS) in software engineering tasks. Experiments on SWE-bench Verified demonstrate that SWE-World raises Qwen2.5-Coder-32B from 6.2\% to 52.0\% via Docker-free SFT, 55.0\% with Docker-free RL, and 68.2\% with further TTS. The code is available at https://github.com/RUCAIBox/SWE-World
Abstract:Recently, large language models (LLMs) have shown remarkable reasoning abilities by producing long reasoning traces. However, as the sequence length grows, the key-value (KV) cache expands linearly, incurring significant memory and computation costs. Existing KV cache eviction methods mitigate this issue by discarding less important KV pairs, but often fail to capture complex KV dependencies, resulting in performance degradation. To better balance efficiency and performance, we introduce ForesightKV, a training-based KV cache eviction framework that learns to predict which KV pairs to evict during long-text generations. We first design the Golden Eviction algorithm, which identifies the optimal eviction KV pairs at each step using future attention scores. These traces and the scores at each step are then distilled via supervised training with a Pairwise Ranking Loss. Furthermore, we formulate cache eviction as a Markov Decision Process and apply the GRPO algorithm to mitigate the significant language modeling loss increase on low-entropy tokens. Experiments on AIME2024 and AIME2025 benchmarks of three reasoning models demonstrate that ForesightKV consistently outperforms prior methods under only half the cache budget, while benefiting synergistically from both supervised and reinforcement learning approaches.
Abstract:Reinforcement learning with verifiable rewards (RLVR) has shown great potential to enhance the reasoning ability of large language models (LLMs). However, due to the limited amount of information provided during the RLVR process, the model can only engage in largely blind exploration, which often results in failure on challenging problems. To provide additional information for the RLVR process without relying on a teacher model, we propose A$^2$D, an Adaptive Ability Decomposing method for enhancing the effectiveness of RLVR. Specifically, we first train a decomposer via RLVR without distillation, enabling it to decompose complex questions into a set of simpler sub-questions. Next, we use this decomposer to annotate sub-questions for each question in the training dataset, and then train the reasoner under RLVR with sub-question guidance. To better understand A$^2$D, we first compare its performance with competitive baselines, showing its effectiveness. Next, we observe that our method functions as a plug-and-play module that can be applied to different RLVR algorithms. Furthermore, we conduct an analysis of the decomposer, revealing how the RLVR process affects its performance and behavior, and which type of guidance is better suited for enhancing the reasoner's exploration and exploitation abilities.
Abstract:Agentic recommender systems leverage Large Language Models (LLMs) to model complex user behaviors and support personalized decision-making. However, existing methods primarily model preference changes based on explicit user-item interactions, which are sparse, noisy, and unable to reflect the real-time, mutual influences among users and items. To address these limitations, we propose RecNet, a self-evolving preference propagation framework that proactively propagates real-time preference updates across related users and items. RecNet consists of two complementary phases. In the forward phase, the centralized preference routing mechanism leverages router agents to integrate preference updates and dynamically propagate them to the most relevant agents. To ensure accurate and personalized integration of propagated preferences, we further introduce a personalized preference reception mechanism, which combines a message buffer for temporary caching and an optimizable, rule-based filter memory to guide selective preference assimilation based on past experience and interests. In the backward phase, the feedback-driven propagation optimization mechanism simulates a multi-agent reinforcement learning framework, using LLMs for credit assignment, gradient analysis, and module-level optimization, enabling continuous self-evolution of propagation strategies. Extensive experiments on various scenarios demonstrate the effectiveness of RecNet in modeling preference propagation for recommender systems.
Abstract:Click-through rate (CTR) prediction plays a pivotal role in online advertising and recommender systems. Despite notable progress in modeling user preferences from historical behaviors, two key challenges persist. First, exsiting discriminative paradigms focus on matching candidates to user history, often overfitting to historically dominant features and failing to adapt to rapid interest shifts. Second, a critical information chasm emerges from the point-wise ranking paradigm. By scoring each candidate in isolation, CTR models discard the rich contextual signal implied by the recalled set as a whole, leading to a misalignment where long-term preferences often override the user's immediate, evolving intent. To address these issues, we propose GenCI, a generative user intent framework that leverages semantic interest cohorts to model dynamic user preferences for CTR prediction. The framework first employs a generative model, trained with a next-item prediction (NTP) objective, to proactively produce candidate interest cohorts. These cohorts serve as explicit, candidate-agnostic representations of a user's immediate intent. A hierarchical candidate-aware network then injects this rich contextual signal into the ranking stage, refining them with cross-attention to align with both user history and the target item. The entire model is trained end-to-end, creating a more aligned and effective CTR prediction pipeline. Extensive experiments on three widely used datasets demonstrate the effectiveness of our approach.
Abstract:Optimizing data mixtures is essential for unlocking the full potential of large language models (LLMs), yet identifying the optimal composition remains computationally prohibitive due to reliance on heuristic trials or expensive proxy training. To address this, we introduce \textbf{MergeMix}, a novel approach that efficiently determines optimal data mixing ratios by repurposing model merging weights as a high-fidelity, low-cost performance proxy. By training domain-specific experts on minimal tokens and optimizing their merging weights against downstream benchmarks, MergeMix effectively optimizes the performance of data mixtures without incurring the cost of full-scale training. Extensive experiments on models with 8B and 16B parameters validate that MergeMix achieves performance comparable to or surpassing exhaustive manual tuning while drastically reducing search costs. Furthermore, MergeMix exhibits high rank consistency (Spearman $ρ> 0.9$) and strong cross-scale transferability, offering a scalable, automated solution for data mixture optimization.
Abstract:We introduce LLM-in-Sandbox, enabling LLMs to explore within a code sandbox (i.e., a virtual computer), to elicit general intelligence in non-code domains. We first demonstrate that strong LLMs, without additional training, exhibit generalization capabilities to leverage the code sandbox for non-code tasks. For example, LLMs spontaneously access external resources to acquire new knowledge, leverage the file system to handle long contexts, and execute scripts to satisfy formatting requirements. We further show that these agentic capabilities can be enhanced through LLM-in-Sandbox Reinforcement Learning (LLM-in-Sandbox-RL), which uses only non-agentic data to train models for sandbox exploration. Experiments demonstrate that LLM-in-Sandbox, in both training-free and post-trained settings, achieves robust generalization spanning mathematics, physics, chemistry, biomedicine, long-context understanding, and instruction following. Finally, we analyze LLM-in-Sandbox's efficiency from computational and system perspectives, and open-source it as a Python package to facilitate real-world deployment.
Abstract:Scaling large models requires optimization strategies that ensure rapid convergence grounded in stability. Maximal Update Parametrization ($\boldsymbolμ$P) provides a theoretical safeguard for width-invariant $Θ(1)$ activation control, whereas emerging optimizers like Muon are only ``half-aligned'' with these constraints: they control updates but allow weights to drift. To address this limitation, we introduce the \textbf{Spectral Sphere Optimizer (SSO)}, which enforces strict module-wise spectral constraints on both weights and their updates. By deriving the steepest descent direction on the spectral sphere, SSO realizes a fully $\boldsymbolμ$P-aligned optimization process. To enable large-scale training, we implement SSO as an efficient parallel algorithm within Megatron. Through extensive pretraining on diverse architectures, including Dense 1.7B, MoE 8B-A1B, and 200-layer DeepNet models, SSO consistently outperforms AdamW and Muon. Furthermore, we observe significant practical stability benefits, including improved MoE router load balancing, suppressed outliers, and strictly bounded activations.
Abstract:Recent breakthroughs in video generation have demonstrated an emerging capability termed Chain-of-Frames (CoF) reasoning, where models resolve complex tasks through the generation of continuous frames. While these models show promise for Generative Video Reasoning (GVR), existing evaluation frameworks often rely on single-frame assessments, which can lead to outcome-hacking, where a model reaches a correct conclusion through an erroneous process. To address this, we propose a process-aware evaluation paradigm. We introduce VIPER, a comprehensive benchmark spanning 16 tasks across temporal, structural, symbolic, spatial, physics, and planning reasoning. Furthermore, we propose Process-outcome Consistency (POC@r), a new metric that utilizes VLM-as-Judge with a hierarchical rubric to evaluate both the validity of the intermediate steps and the final result. Our experiments reveal that state-of-the-art video models achieve only about 20% POC@1.0 and exhibit a significant outcome-hacking. We further explore the impact of test-time scaling and sampling robustness, highlighting a substantial gap between current video generation and true generalized visual reasoning. Our benchmark will be publicly released.